Comparison of CO2 capture capacity for sodium-based sorbent at low temperature

<u>유천용</u>, 권용목, 이수출, 남현석, 류청걸¹, 이중범¹, 김재창^{*} 경북대학교; ¹한국전력연구원 (kjchang@knu.ac.kr^{*})

Sodium-based sorbents were prepared by the impregnation method with sodium carbonate (Na_2CO_3) on supports used such as Al_2CO_3 , ZrO_2 , MgO various supports. The sorbents calcined in a furnace under a N_2 flow (100ml/min) for 5 h at 500°C. The CO₂ absorption and regeneration properties were measured in a fixed bed reactor at various temperature and H_2O concentration condition (CO₂ absorption 30~60°C and regeneration 200°C, water vapor 4~12 vol. %). The CO₂ capture capacity of the sodium carbonate on supports Al_2CO_3 , MgO sorbents were 214.8 mg CO₂/g sorbent and 244.6 mg CO₂/g sorbent, respectively (CO₂ absorption at 50°C with water vapor 12 vol. %). However, the CO₂ capture capacity of the sodium carbonate on supports Al_2CO_3 , MgO sorbents dramatically decreased after 2 cycle, which were not completely regenerated. It is discussed by analysis of sodium-based sorbents character and cause using XRD and TG.