Dye-sensitized solar cells based on Double Layer Photoelectrodes: Performance improvement and their mechanisms

전하림, 박정태, 고종관, Rajkumar Patel, 김종학* 연세대학교 (jonghak@yonsei.ac.kr*)

A hierarchical TiO_2 photoelectrode organized of TiO_2 nanoparticles as bottom layer and TiO_2 nanospheres as top layer was fabricated and applied to dye-sensitized solar cells (DSSCs) photoelectrode. TiO_2 nanospheres as scattering layer were successfully prepared via successive ATRP and sol-gel process. And then, calcination at 450 °C, TiO_2 nanospheres with hierarchical pores were generated. Results indicate in remarkable enhancement of the cell performance and dye adsorption ability. Furthermore, the TiO_2 nanoparticle layer contacts to FTO substrate are greatly facilitated the electron transfer process due to effective blocking electron recombination in comparison with an only the TiO_2 nanosphere layer. View a from cell performance, the overall solar energy conversion efficiency of 5.51% was achieved with the TiO_2 nanospheres layer are used to scattering layer on the TiO_2 nanoparticles layer (hierarchical TiO_2 photoelectrode), which is 20% higher than that pristine TiO_2 photoelectorde with only TiO_2 nanoparticles layer.