Study on the Applicability of Gas–Solid Reaction Models in the Gasification of Inner Mongolian Lignite with CO_2 in the presence Alkali Metals and Transition Metal Salts

<u>Vergel Bungav</u>, 김경욱, 송병호*, 김상돈¹, 손정민², 심현민³, 김용준³, 김규태³, 박삼룡³, 임영일⁴ 군산대학교; ¹KAIST; ²전북대학교; ³SK Energy; ⁴한경대학교 (bhsong@kunsan.ac.kr*)

Catalytic gasification of Inner Mongolian lignite with CO_2 was investigated in a thermogravimetric analyzer at 600C-900C at 5% to 15% wt loading via physical mixing. Catalysts used were K_2CO_3 , Na_2CO_3 , K_2SO_4 and $FeSO_4$. In this study, the (1) homogeneous (HM), (2) shrinking core (SCM), (3) random pore (RPM), (4) modified (MVM) and (5) extended modified volumetric models (EMVM) were evaluated and goodness of fit for the conversion behavior was measured from the root mean square deviation, R^2 . In most catalytic gasification runs, the RPM, MVM and EMVM showed goodness of fit and the EMVM approaches the MVM at higher temperatures. This study further confirms the applicability of EMVM for high-temperature uncatalyzed gasification (Wu et al, 2009) and further suggests its applicability to catalyzed gasification as well.