Stability of supported Pt nanoparticles for selective reduction of N_2O with H_2

<u>김대환</u>, 김문현^{1,*} 대구대학교; ¹대구대학교 환경공학과 (moomkim@daegu.ac.kr*)

The present study has been focused on an on-stream stability of silica-supported Pt nanocrystallites for the selective reduction of N₂O by H₂ at low temperatures, such as 90°C-135°C. Samples of the supported Pt with its different loadings were prepared using an ion exchange technique and characterized by H₂ adsorption, XRD, HRTEM and *in situ* DRIFTS measurements. Both activity and stability in this N₂O reduction with the catalysts were strongly dependent on the amounts of Pt and its nanoparticle sized, the ratio of H₂/N₂O fed, and the reaction temperatures chosen, In case that a sample of 1.72% Pt/SiO₂ was employed for the reduction at 90°C, it was very difficult to obtain a steady-state N₂O conversion, which might be associated with the pore blockage by H₂O that is produced during the reaction. At higher temperatures, such as 135°C, the extent of such deactivation was significantly improved. The supported catalysts consisting of small Pt nanoparticles less than 5 nm possessed a better stability for the N₂O reduction in the presence of H₂.