Fabrication of meso-sphrerical TiO₂ film with different calcination temperatures for Dyesensitized Solar Cells

<u>이정화</u>, 김명실, 나현정, 김지만* 성균관대학교 (jimankim@skku,edu*)

Dye-sensitized solar cells have attracted much attention with their low production costs of electricity and relatively high energy-conversion efficiencies. Recently, nanocrystalline ${\rm TiO_2}$ powders have been used as a working electrode for DSSC due to a higher efficiency, lower cost. In order to maximize the cell efficiency of DSSC, the ${\rm TiO_2}$ material should have a high surface area where the dye can be sufficiently adsorbed. In this study, mesoporous spherical anatase ${\rm TiO_2}$ with high surface area were successfully prepared via in situ hydrolysis of titanium glycolate precursor spheres. The particlediameters of the prepared ${\rm TiO_2}$ spheres ranged from 3.3 to 11.4nm through annealing for different calcinations temperatures from ${\rm 100^oC}$ to ${\rm 700^oC}$. An overall solar conversionefficiency of 6.3% was achieved using the mesoporous ${\rm TiO_2}$ spheres electrode which was annealed for ${\rm 200^oC}$ and higher than the other electrodes. These different ${\rm TiO_2}$ photoanodes were also treated with a dilute solution of ${\rm TiCl4}$ at room temperature. Significant improvement in the photocurrent was observed for all of the mesoporous ${\rm TiO_2}$ electrodes.