Studies on the Steam CO₂ Reforming of Methane at high pressure for GTL-FPSO Applications

<u>이윤주</u>^{1,2}, Arif^{1,3}, 양은혁^{1,3}, 김상우⁴, 하헌필⁵, 안병성¹, 홍석인², 문동주^{1,3,*} ¹KIST, Clean Energy Center; ²Korea Univ., Dept. of Chem. & Bio. Eng.; ³UST, Clean Energy and Chemical Eng.; ⁴KIST, High Temperature Energy Materials Center; ⁵KIST, Functional Materials Center (djmoon@kist.re.kr*)

Steam CO_2 reforming (SCR) of methane for the production of syngas was investigated over Ni-based catalysts for GTL – FPSO (Floating Production Storage and Offloading) applications. The Ni-based catalysts were prepared by an impregnation method. The catalysts before and after the reaction were characterized by N_2 physisorption, XRD and TEM techniques.

The H₂/CO ratio produced in the SCR showed a strong dependence on the feed composition. The conversion of CH₄ was increased with increasing the concentration of H₂O and CO₂ in the feed. For the application in GTL–FPSO process, production of syngas by SCR with high pressure (25 bar) was simulated by PRO–II. The simulated results were compared with experimental results in a fixed bed reactor system by controlling the feed molar ratios of CH₄ : H₂O : CO₂. It was found that Ni/MgO catalyst showed higher catalytic performace than Ni/y-Al₂O₃ and Ca–Ni/y-Al₂O₃ catalysts in GTL–FPSO process applications.