Carbon dioxide reforming of methane on Co-Ni-CaO/MgO-Al₂O₃: effects of Co

<u>민지은</u>, 박해구, 이윤조, 전기원^{*} 한국화학연구원 (kwjun@krict.re.kr^{*})

Effects of cobalt addition into Ni–CaO/MgO–Al₂O₃ catalysts have been investigated while employing cobalt as a promoter to improve the thermal stability and resistance to carbon–deposition in carbon dioxide reforming of methane (CDR). CDR were carried out under reaction conditions; T = 750 °C, P = 1 bar, CH4/CO2/N2 = 1/1/1 (molar ratio) and GHSV = 90,000 mL (CH4)/g_{cat}/h. The Co–Ni–CaO/MgO–Al₂O₃ catalysts were prepared by using impregnation method and characterized by N₂ adsorption, XRD, TGA and TPR. The Co–Ni–CaO/MgO–Al₂O₃ catalyst showed much higher CH₄ conversion, stability and lower carbon deposition as compared to the catalysts without cobalt addition. It was found that addition of cobalt improved the dispersion and prevented the sintering of NiO during CDR.