Enhancement of CO₂ absorption rate in post combustion process using carbonic anhydrase

Mari Vinoba, 추대현¹, 김성아, 정순관* 한국에너지기술연구원; ¹고려대학교

In this study, the enhancement of carbon dioxide (CO₂) absorption rate of monoethanol amine (MEA), diethanol amine (DEA), methyldiethanol amine (MDEA), and 2-amino-2-methyl 1-propanol (AMP) solution has been investigated upon addition of bovine carbonic anhydrase (CA), using VLE (vapor-liquid equilibrium) device. The enthalpy (ΔH_{abs}) of CO₂ absorption and absorption capacities of the aqueous amines were measured in the presence and/or absence of CA enzyme by differential reaction calorimeter (DRC). The reaction temperature increase (ΔT) in adiabatic mode was also studied by DRC analysis. The bicarbonate and carbamate species formation mechanism were illustrated by ¹H and ¹³C NMR spectra. The CO₂ absorption rate (flux), rate constant (K_{app}) for the above amines was found to be in the order MEA>DEA>AMP> MDEA and MDEA>AMP>DEA>MEA with respect absence and, presence of CA. This study demonstrates that CA promotes CO₂ absorption rate of MDEA was three fold higher than MEA. The thermal effects suggest that higher activity CA at 40°C.