Chradical-Induced Dechlorination of Pcbs at Low Temperature

<u>이학봉</u>, 이동근*, 이상준¹, 박철순², 장기², 소니아 헤남² 경상대학교 화학공학과; ¹경상대학교 BK핵심환경 인력양성사업단; ²경상대학교 환경보전학과 (d-klee@gnu.ac.kr*)

PCBs currently are principally being destroyed by incineration, which has become the most widely used technique for their removal. Hutzinger et al. reported that at temperatures higher than 800° C, PCBs were thermodynamically unstable and pyrolysis products were C(s), CO, CO₂, HCl and Cl₂. Incineration, however, often produces more toxic compounds if it is not carefully controlled. Erickson et al., for example, indicated that polychlorinated dibenzofurans (PCDFs) and polychlorinated dibenzodioxins(PCDDs) were both observed in the combustion of PCBs. About 1% of the PCBs in the system were converted into PCDFs.

Other methods for the destruction of PCBs that have been proposed include wet air oxidation, biodegradation, reaction with superoxide, photodechlorination, sodium metalpromoted dehalogenation, electrolytic reduction, and dechlorination with zero-valent iron. The present work was undertaken to achieve detoxification of aqueous media containing toxic PCBs. To do this a radical-induced total dechlorination of PCBs at low temperature was employed.