Carbon Supported Pt-SnO₂ Nanoparticles Thin Films: Structural and Electrochemical Properties

<u>송민우</u>, Sadia Ameen, 칸피로스, 김영순, 신형식* 전북대학교 (hsshin@jbnu.ac.kr*)

The tin oxide (SnO_2) thin film on carbon (C) paper was deposited by the plasma enhanced chemical vapor deposition (PECVD) using hydrated stannic chloride $(\text{SnCl}_4.\text{xH2O})$ and oxygen $(O_2, 300 \text{ sccm})$ as a source material with the glow discharge through a resistive coupling mechanism at 13.5 MHz and the power of 60 W. Further, the platinum (Pt) layer was coated on SnO_2 thin film through RF sputtering. The X-rays photoelectron spectroscopy (XPS) studies were confirmed the existence of Sn and O species in the prepared SnO2 thin film. The cyclic voltammetry (CV) was carried out in the electrolyte solution of H_2SO_4 and $\text{H}_2\text{SO}_4/(\text{MeOH})$ using Pt/C and Pt/SnO₂/C thin film electrode. In $\text{H}_2\text{SO}_4/\text{MeOH}$ electrolyte mixture, the Pt/SnO₂/C thin film electrode showed the increased anodic peak current than the Pt/C which deduced the efficient role of SnO₂ for the enhanced anodic oxidation.