Methane Reduction, Water Decomposition and Air Oxidation of Copper-Containing ${\rm Fe_2O_3/ZrO_2}$ Media

<u>김재호</u>^{1,2}, 박주식^{1,*}, 강경수¹, 배기광¹, 김영호², 김창희¹, 조원철¹, 정성욱¹ ¹한국에너지기술연구원; ²충남대학교 (cspark@kier.re.kr*)

The three-reactor chemical-looping process (TRCL) for the production of hydrogen from natural gas is attractive for both CO₂ capture and hydrogen production.

Copper containing Fe_2O_3/ZrO_2 media were prepared by co-precipitation method. The atomic rations of Cu/Fe for the synthesized CuO-Fe₂O₃/ZrO₂ were 1/2, 1/4, 1/6 and 1/8.9. The redox properties of the media were isothermally tested by thermal gravimetric analyzer(TGA) at 825, 850, 875 and 900 °C for methane reduction, water decomposition and air oxidation.

Copper containing Fe_2O_3/ZrO_2 media showed the improvement in the reactivity than Fe_2O_3/ZrO_2 during repeated redox cycles. $CuO-Fe_2O_3/ZrO_2$ media with the atomic ratios of 1/4 and 1/6 have showed the remarkable improvements in reactions with methane and water.