Direct Hydrocyclization of Biomass-Derived Levulinic Acid to 2-Methyltetrahydrofuran over Nanocomposite Copper/Silica Catalysts

<u>강효윤</u>^{1,2}, Pravin P. Upare¹, 장종산^{1,*}, 황동원¹, 황영규¹, 황진수¹, 이정호¹ ¹한국화학연구원; ²과학기술연합대학원대학교 (jschang@krict.re.kr*)

Nanocomposite Cu/SiO_2 catalysts, which were prepared by a precipitation-deposition method, are effective for the hydrocyclization of biomass-derived carboxylic acids such as LA, SA, and FA to the corresponding cyclic hydrofurans or cyclic lactones in vapor phase reactions at moderate H₂ pressures. In the reaction of LA, the Cu/SiO₂ catalysts shows increased selectivity for MTHF with increasing the copper loading up to 80 wt%. The addition of nickel to the catalyst with a high copper loading shows the effect of the promoter, through the enhanced selectivity.

The nanocomposite catalysts can be used for long-term reactions without remarkable sintering and leaching of copper, and so could be promising candidates for hydrocyclization or hydrogenation in biorefinery research.