Deactivation of Pt/SiO₂ catalysts in the reduction of N₂O by H₂ <u>김대환</u>, 김문현* 대구대학교 환경공학과 (moonkim@daegu.ac.kr*) The present study has been focused on the extent of on-stream deactivation of Pt nanoparticles, dispersed on high surface area silica, in the reduction of N_2O by H_2 at low temperatures, such as 90°C – 135°C . A sample of a 0.65% Pt/SiO $_2$ catalyst reduced at 400°C had very high deN_2O activity even at 110°C and $102,500\text{h}^{-1}$, depending significantly on H_2 -to- N_2O ratio, and whether or not the presence of guest molecules such as O_2 and H_2O . The catalyst showed the deactivation during the course of reduction even under a clean condition; however, such a deactivation profile was very reproducible when allowing repeated measurements to the deN_2O reaction. In case that a catalyst sample with greater Pt loadings, representatively 1.72% Pt/SiO $_2$, was used for this reaction, N_2O conversions near 100% were obtained for ~ 80 h after which the activity greadually decreased with time and was finally approached to 86%, but this catalyst also possessed a quite reproducible behavior in the deactivation. It is clear that the catalyst deactivation was associated with no changes in the nanoparticles sizes, as confirmed by H_2 chemisorption and XRD measurements. In order to clarify the deactivation mechanism, spectroscopic studies were conducted.