Polyethylene glycol 첨가에 의한 다공성 TiO₂ 제조 및 염료감응형 태양전지 특성평가

<u>조은희</u>^{1,2}, 김선경^{1,3}, 장희동^{1,2,*}, 장한권^{1,2}, 노기민¹, 김태오⁴ ¹한국지질자원연구원; ²과학기술연합대학원대학교; ³서강대학교; ⁴금오공과대학교 (hdiang@kigam.re.kr*)

염료감응형 태양전지(Dye-sensitized solar cell, DSSC)는 기존의 화석연료를 대체할 친환 경 에너지 자원으로서 저렴한 제조비용과 간단한 제작공정, 20년 이상의 긴 수명을 가지는 장점으로 많은 주목을 받고 있다. 일반적으로 DSSC 광전극은 TiO₂ 나노입자들 간의 무질서 한 연결을 통해 형성되어 있으며, 이에 나노입자간의 전자 전달 효율이 낮은 점이 DSSC 변 환효율을 향상시키기 위해 해결해야 할 중요한 문제점으로 알려져 있다.

본 연구에서는 에어로졸 공정을 이용하여 입자 크기가 약 10 nm인 TiO₂ sol 용액에 Polyethylene glycol을 첨가하여 다공성 TiO₂ 분말을 제조하였다. 제조된 분말은 FE-SEM, BET, BJH 등을 이용하여 분말의 형상, 비표면적, 기공특성을 조사하였고, Solar simulator를 이용하여 DSSC의 에너지 변환효율을 측정하였다. FE-SEM 분석 결과, 제조된 분말은 0.5 ~ 1 µm 크기를 가진 구형의 다공성 입자를 나타내었다. 이때 분말의 비표면적은 150 m²/g으로 기존의 TiO₂ 나노분말보다 높은 값을 나타내었다. 다공성 TiO₂를 적용한 DSSC의 효율을 측 정한 결과, 순수한 TiO₂ 보다 향상된 효율을 나타내었다.