Application of TiO₂-Coated Zeolite Particles for NO and SO₂ Removals by Dielectric Barrier Discharge Process

<u>김교선</u>*, Anna Nasonova¹ 강원대학교 화학공학과; ¹고려대학교 화공생명공학과 (kkyoseon@kangwon.ac.kr*)

The dielectric barrier discharge-catalyst (DBD-C) hybrid process and dielectric barrier discharge-catalyst-photocatalyst (DBD-C-P) hybrid process were analyzed for NO and SO_2 removals. In DBD-C hybrid process, zeolite particles were used as dielectric materials and catalysts for dielectric barrier discharge; in DBD-C-P hybrid process, zeolite particles were coated with TiO_2 photocatalyst by a rotating cylindrical PCVD reactor to investigate the combined effects of plasma-catalyst-photocatalyst on NO and SO_2 removals. TiO_2 photocatalyst was coated partially on the zeolite surface while keeping the porous structure of zeolite. The NO and SO_2 removals were studied for various process variables such as applied peak voltage, initial NO and SO_2 concentrations, pulsed frequency and residence time. The NO and SO_2 removal efficiencies in the DBD-C-P hybrid process are 1.02–3.4 times and 1.03–4 times higher, respectively, than those in the DBD-C hybrid process for the process variables in this study. We found that the zeolite particles coated with TiO_2 photocatalyst by a rotating cylindrical PCVD reactor could be effectively used to remove NO and SO_2 in DBD-C-P hybrid process.