열중량분석기를 이용한 촉매함량에 따른 저등급석탄의 char-CO₂ 촉매가스화 반응

<u>이도균</u>, 황순철¹, 박지윤, 김상겸¹, 이상헌, 이시훈², 유지호², 이영우* 충남대학교; ¹충남대학교 녹색에너지기술전문대학원; ²한국에너지기술연구원 (ywrhee@cnu.ac.kr*)

자원이 부족한 우리나라에서는 에너지의 안정적인 수급을 위하여 매장량이 풍부한 석탄자원의 활용이 필수적이다. 최근 석탄 가격이 급상승하여 추가 비용을 최소화하기 위해 저등급석탄을 이용하는 방안이 대두되고 있다. 석탄을 이용하는 대표적인 기술인 석탄가스화기술은 석탄을 가스화기기에 주입하여 불완전 연소시켜 CO와 H2를 주성분으로 하는 합성가스를 제조한다. 그러나 기존의 고온·고압 공정에서 가스화는 부가적인 에너지 사용이 많아 비효율적이다. 따라서 가스화공정의 효율을 높이기 위해서는 저온 가스화가 요구된다. Char-CO2가스화반응은 Char-steam 가스화반응과 유사한 경향성을 보이지만, Char-CO2가스화반응의 반응속도는 char-steam 가스화반응의 반응속도보다 4배 느리다. 그러므로 char-CO2 가스화 반응이 가스화반응 특성을 확인하는데 보다 유용하게 반응진행을 관찰할 수 있다. 본 연구에서는 석탄가스화 반응에서 활성이 좋은 촉매로 알려진 Na2CO3를 이용하여 저등급 석탄인 ROTO탄의 char-CO2 가스화 반응을 TGA(thermogravimetric analysis)로 실험하였다. 촉매 Na2CO3의 첨가량을 변화시켜 동일온도인 900 ℃에서 반응을 시켜 무게변화량을 통하여 석탄 내 탄소의 전환율, 반응속도 등을 알아보았다.