1607

Carbon Dioxide Conversion into Hydrocarbon Fuels on Copper

<u>신동윤</u>^{1,2}, 조준호¹, 이재영², 임동희^{1,*} ¹한국과학기술연구원 연료전지연구센터; ²서울시립대학교 (limkr@kist.re.kr*)

CO₂의 HC화합물로 전환은 온실가스를 감소시켜 지구온난화 문제를 해결할 뿐만 아니라, 탄 소자원의 재활용이란 측면에서 매우 중요하다. 하지만 탄소화합물중 안정한 화합물인 CO₂ 를 유용한 HC화합물로의 전환은 에너지를 요구하며, 또한 더욱 효율적인 촉매 개발이 필요 한 실정이다. 그 동안 다양한 연구들을 통해 Cu촉매는 CO₂를 전기화학적 반응을 통해 유용 한 HC화합물(HCOOH, CH₄ 등)의 생산에 그 효율성과 경제성이 증명되었다. 하지만 더 향상 된 CO₂전환율을 위해서는 오버포텐셜의 감소가 중요한 과제로 남아있다. 기존에 연구되었 던 Cu(211)표면에 대한 DFT 계산결과는 계단모형으로서 흡착물의 강한 흡착으로 중간생성 물의 전환에 높은 에너지가 요구된다는 단점이 있다. 따라서, 본 연구에선 CO₂전환의 최적경 로를 찾는데 Cu(100, 111).표면에 DFT 모델링을 수행하여 CO₂의 전환 메커니즘을 분 석하였다. 그 결과로서, 각 표면에서 CO가 CHO로 전환되는 경로가 전체 반응을 결정짓는 단계로 확인 되었고, Cu(100, 111).표면이 실험결과에서 관찰되는 CH₄가스가 생성되는데 필 요한 포텐셜과 매우 일치하였다. 이 중, Cu(110)표면은 상대적으로 CO 대비 CHO의 흡착을 강하게 유도하여 전체 반응단계의 에너지 벽을 낮추는데 기여하였고, 가장 높은 포텐셜이 나 타난 Cu(111).표면은 CO₂반응속도를 결정짓는 표면이라 할 수 있다. 본 연구는 CO₂환원반응 의 오버포텐셜을 낮출수 있는 촉매특성의 이해 향상에 기여할 것으로 기대된다.