Preparation of $Ag_3(PO_4)_x(VO4)_{1-x}$ photocatalyst and its Photocatalytic Performance

 $Ag_3(PO_4)_x(VO_4)_{1-x}$ was prepared by precipitation method and evaluated for the decomposition of Orange II dye under visible light irradiation($\lambda > 530$ nm). UV-vis DRS showed that $Ag_3(PO_4)_x(VO_4)_{1-x}$ had similar visible light absorptivity to Ag_3VO_4 . X-ray diffraction indicated that $Ag_3(PO_4)_x(VO_4)_{1-x}$ was a single-phase compound. XRD pattern of $Ag_3(PO_4)_x(VO_4)_{1-x}$ was very similar to the XRD pattern of Ag_3VO_4 . It was due to Ag_3VO_4 was more stable than Ag_3PO_4 . Moreover, right shifted XRD pattern means that relatively small PO_4^{3-} ions penetrated into Ag_3VO_4 lattice. The photo activities of the synthesized samples were evaluated by photocatalytic decomposition of the Orange II dye. $Ag_3(PO_4)_x(VO_4)_{1-x}$ had better photocatalytic activity than Ag_3PO_4 and Ag_3VO_4 under $\lambda > 530$ nm irradiation, where Ag3PO4 rarely absorbed the light.