Thermochromic properties of W and Mo co-doped VO₂ nanoparticles

<u>조초원</u>^{1,2}, 유중환^{1,*}, 신지혜¹ ¹한국세라믹기술원; ²고려대학교 (jwyoo@kicet.re.kr*)

Monoclinic phase vanadium dioxide(VO₂) takes place its phase reversibly into tetragonal phase at about 68°C. Because of the metal-insulator transition(MIT) characteristic of VO₂, it has great application potentials such as temperature sensing devices and intelligent energy conserving windows coating. The transition temperature(T_c) can be adjusted by doping with W, Mo, Nb and etc. Previous studies on reducing T_c of VO₂ have been investigated mainly as single W doped into VO₂, but it reveals drastic changes of T_c . As an alternative, co-doping method could be possible for fine control of T_c . In this study, We prepared W-Mo co-doped VO₂ particle using hydrolysis of VOSO₄. From the XRD results, the crystallinity of W-Mo-VO₂ with VO₂(M) phase is stronger than W-VO₂ itself. T_c can be precisely controlled by adding Mo to W-VO₂ particle from DSC analysis. TEM analysis confirmed the W-Mo-VO₂ has uniform morphology and narrow size distribution. For more information, FE-SEM, XPS studies have been carried out.