공침법에 의해 제조된 Fe/Cu/K-Al₂O₃(SiO₂) 촉매에 의한 CO₂의 수소화 반응에 의한 Hydrocarbon 합성

<u>노병호</u>, 김다미, 송경호, 김병권, 김학주* 한국에너지기술연구원 (hakjukim@kier.re.kr*)

온실가스 감축을 위한 기술로서 CO_2 를 포집하여 수소화 반응을 통해 CO_2 를 처리함과 동시에 생산되는 액체 탄화수소 생산하고자 하는 연구가 진행되고 있는 실정이다. 액체 탄화수소를 만드는 Fischer-Tropsch (FT)합성반응에서 CO_2 + $3H_2$ 반응에 의해 액체 탄화수소를 제조하고자 철(Fe)이나 코발트(Co) 촉매를 이용하여 탄화수소의 chain 성장반응을 통해 선형 파라핀계 탄화수소로 변환시켜 주는 공정을 이용하고자 하는 연구가 진행되고 있다. 현재 GTL(Gas-to-Liquid 천연가스 액화기술)이란 천연가스를 화학 반응을 통하여 액체 탄화수소를 제조하는 기술로 이 기술은 천연가스로부터 합성 가스(CO+ H_2)를 거쳐 액체 탄화수소를 제조해야 하는 문제점이 있다. Fe와 Co계의 상업용 촉매에는 반응성, 선택도 및 열적 안정성 향상시키기 위해 주로 귀금속계의 Ru, Rh, Pt 계열과 K, Zn, La, Mg 등의 금속산화물을 조촉매 성분으로 첨가하여 제조하고, 지지체 또는 바인더로서 Al_2O_3 , SiO_2 등이 사용되고 있다.

본 연구에서는 공침법에 의해 Fe/Cu/K 복합산화물을 제조한 후 Al_2O_3 또는 SiO_2 담지체를 함침하여 제조하였다. 제조된 촉매의 특성은 XRD, BET, TPR, SEM을 이용하여 그 특성을 파악하였으며, 반응물의 조성비는 $[H_2]/[CO_2]=3/1$ 에서 체류시간(GHSV) 및 반응온도를 달리하여 CO_2 의 수소화 반응에 의한 Hydrocarbon 합성 실험을 진행하였다.