Decomposition of H₂S on Ni(100) and Ni₃Al(100): A first-principles study

인동희, Juan Martin Hernandez¹, Hoang Viet Phuc Nguyen, 윤성필, 한종희, 남석우, 김수 길¹, 함형철* 한국과학기술연구원 연료전지연구센터; ¹중앙대학교 융합공학부 나노바이오소재공학 (hchahm@kist.re.kr*)

Spin-polarized density functional theory studies of H_2S decomposition on Ni(100) and Ni₃Al(100) surfaces were conducted to understand the aluminum(Al) alloying effect on the H_2S dissociation. We first determined the near surface structure of fully ordered Ni₃Al alloy along the [100] direction and examined the activation barriers for the H_2S and HS decomposition by using Climbing Image-Nudged Elastic Band method. We found that Al atom in bimetallic Ni₃Al(100) tends to exist in the first surface layer, rather than in the second or third layer, and the Ni₃Al (100) surface can substantially retard the H_2S decomposition by reducing the adsorption energy of sulfur compounds compared to the pure Ni(100) case. Furthermore, we found that the modification of surface Ni atoms by Ni-Al electronic (ligand) interaction and vertical location of Al in the Ni₃Al(100) slab, in particular, the alteration of the Ni d state induced by the first surface layer Al (rather than the second layer Al), serves an important role in reducing the adsorption energy of sulfur compounds.