Density Functional Theory Study for the Evaluation of M-doped TiO₂(101) (M = Cr, Mn, Fe, Co and Ni) over CO Oxidation

<u>김경학</u>, 유성주¹, 이종협¹, 한정우* 서울시립대학교; ¹서울대학교 (jwhan@uos.ac.kr*)

 TiO_2 는 산화력이 매우 크면서도 안정한 물질이고, 인체에 무해하여 산화반응을 동반하는 광촉매나 연료전지 분야에서 효율 향상을 위한 촉매로써 널리 사용되고 있다. 고효율의 TiO_2 촉매를 설계하기 위한 한 방법으로 금속 도핑이 사용될 수 있는데, 이는 산화반응의 활성을 높이는데 중요한 역할을 할 수 있다. 우리는 Density functional theory (DFT) 계산을 사용하여 anatase TiO_2 (101) 위에서 Ti를 같은 주기의 Cr, Co, Mn, Fe, Ni 등으로 도핑하여 CO의 CO_2 로의 산화반응의 반응성을 비교하였다. 이를 통해 도핑이 CO 산화의 반응성을 증가시킬수 있음을 확인하였고, 도핑 시 TiO_2 (101)에서 CO 산화반응의 주된 메커니즘으로 알려진 CO Mars-van Krevelen 메커니즘을 전부 조사하지 않아도, 그 반응성을 쉽게 예측할 수 있는 인자(descriptor)를 발견하였다. 이러한 원리는 CO0 산화반응의 활용이나 설계에 있어서 도움이 될 것이고, CO10 위에서의 다른 촉매화학반응에도 적용될 수 있을 것이다.