Small addition of noble metals onto Ni/MgAl_2O_4 catalysts for the combined $\rm H_2O$ and $\rm CO_2$ reforming of coke oven gas

<u>박지은</u>1.2, 구기영¹, 정운호¹, 노현석², 윤왕래^{1,*} ¹한국에너지기술연구원; ²연세대학교 (wlyoon@kier.re.kr*)

Coke Oven Gas(COG)는 코크생산공정의 부생가스로서, H₂(48-55%),CH₄(28-30%),N₂(1-3%),CO(5-7%),CO₂(2-3%)로 구성되어있다. COG의 수증기/이산화탄소 복합개질반응을 통 해 생성된 H₂/CO 합성가스를 직접환원철의 환원제로 활용하게 되면, 고로(blast furnace)에 서 철광석 환원을 위해 필요한 코크를 일부 대체함으로써 CO₂발생량이 줄고, 회수한 CO₂를 개질반응의 반응물로 부분적으로 재활용하기 때문에 환경친화적이란 장점을 지닌다. 일반적 으로, 개질반응에 쓰이는 Ni계 촉매는 탄소침적 및 고온반응에서 입자 소결에 의해 촉매가 비활성화되는 문제점이 있는데, 일차적으로 높은 활성 및 내코킹 특성을 가진 Ni 촉매의 개 발이 불가피하다. 따라서, 본 연구에서는 10wt%Ni/MgAl₂O₄ 촉매에 대해 COG 복합개질반 응에서의 귀금속첨가 영향을 살펴보고자 하였다. 귀금속으로는 Ru, Pt, Rh 을 각각 0.1wt% 첨가하였고, 귀금속 첨가 순서의 영향을 살펴보기 위해 동시 함침법과 연속 함침법으로 각각 제조하였다. 제조촉매의 비표면적, NiO 결정크기, 분산도, 환원특성을 살펴보기 위해 BET,XRD,H₂-Chemisorption,CO-Chemisorption,H₂-TPR 분석을 수행하였다. 촉매성능평 가는 CH₄: H₂O: CO₂: N₂= 1:1.2:0.4:1, GHSV=560,000ml/h-g_{cat} 반응온도 700°C ~ 900°C 에서 수행하였다. 반응 후 촉매를 회수하여 SEM, TGA,TEM분석을 통하여 내코킹특성 및 내소결특성을 함께 살펴보았다.