Operating Conditions Study for CO₂ Transport

<u>Umer Zahid</u>, Ung Lee, 한종훈* 서울대학교 (chhan@snu.ac.kr*)

CCS is thought to be a practical solution for control of CO_2 emission level in atmosphere. It becomes even more challenging when CO_2 is transported to an offshore storage since there is little experience with subsea pipelines for CO_2 transportation. In this study, a plausible transport and storage model scheme has been developed and then employed to study different offshore CO_2 transportation cases for distance of 150km long pipeline as: CO_2 transport in liquid phase (Temperature =-20 C, Pressure=6.50 MPa); CO_2 transport in liquid phase (Temperature=5 C, Pressure 9.30 MPa); CO_2 transport in supercritical phase (Temperature=40 C, Pressure=15.00 MPa). Since the compressor is the most power consuming equipment, compression energy requirement per ton of CO_2 compressed for case 1, 2 and 3 was consequently 96.20, 99.75 and 118.26KWh respectively. Transport cost varies between 10.9– 15.5\$ depending on specific scenario.

This research was supported by the LNG Plant R&D Center funded by the Ministry of Land, Transportation and Maritime Affairs (MLTM) of the Korean government.