CO₂/CH₄ separation properties of alicyclic dianhydride based soluble polyimide membranes

<u>박채영</u>^{1,2}, 장봉준¹, 김정훈^{1,3,*} ¹한국화학연구원; ²충남대학교; ³과학기술연합대학원대학교 (jhoonkim@krict.re.kr*)

 $\rm CH_4$ is emitted from landfills or during anaerobic digestion of activated sludge, food wastes and animal wastes. $\rm CH_4$ has 21 times larger global warming potential than $\rm CO_2$ and has the 2nd largest contribution to global warming. The upgrading of $\rm CH_4$ is very important in terms of both prevention of global warming and security of renewable energy for vehicle fuels or gas grid injection. Biogas can be efficiently upgraded by removing $\rm CO_2$ and $\rm H_2S$ via membrane process. The performance of membrane process depends mainly upon $\rm CO_2/\rm CH_4$ selectivity and $\rm CO_2$ permeability of membrane materials.

The objective of this study is to develop soluble polyimide membrane materials with high CO_2 permeability and high CO_2/CH_4 selectivity. We have developed novel alicyclic dianhydride (DOCDA)-based polyimides with different diamines (MDA, ODA and p-PDA) using m-cresol as a solvent, respectively. DOCDA-ODA showed excellent separation performances (6 barrers of CO_2 permeability and 64 of CO_2/CH_4 selectivity) which are much better than the commercialized membrane materials.