Experimental Verification of CH₄-Flue Gas Swapping by Thermal and Microscopic Analyses

<u>이요한</u>, 김연주, 이재형¹, 서용원* 울산과학기술대학교; ¹한국지질자원연구원 (vwseo@unist.ac.kr*)

Naturally occurring CH_4 hydrates have promising potential as a possible new clean energy source and appropriate materials for sequestering CO_2 . Research has been recently conducted on the injection of flue gas, which consists mainly of CO_2 and N_2 into these natural gas reservoirs. Using this method, CO_2 is able to be stored without separating stage, and a new energy source is more effectively exploited. For this method, thermodynamic properties of CH_4 -flue gas swapping are critical factors for the application of the swapping process. This study is mainly focused on measuring dissociation enthalpy of mixture of CO_2 and N_2 hydrates, and CH_4 hydrates swapped by mixture of CO_2 and N_2 using differential scanning calorimetry (DSC). In order to decide on the proper experimental conditions, three–phase (H–Lw–V) equilibrium points of gas hydrates are measured at various compositions. Each gas hydrate related to this process is also analyzed via NMR spectroscopy, Raman spectroscopy and X–ray diffractometry (XRD) to determine the effect of swapping on the hydrate structure. From this study, the feasibility of CH_4 -flue gas swapping is revealed in terms of thermodynamic analysis.