Versatile graphene oxide encapsulated Fe_3O_4 nanoparticles: Application to highly sensitive fluorescence turn-on biosensor

<u>최 훈</u>, 김명수¹, 이강택^{1,*} 연세대학교; ¹연세대학교 화공생명공학과 (ktlee@yonsei.ac.kr*)

Fe₃O₄@GO hybrids were synthesized by electrostatic force between amine functionalized Fe₃O₄ nanoparticles(NPs) and GO sheets. Negatively charged graphen oxide(GO) sheets readily attached onto the surface of positively charged magnetic NPs by electrostatic self-assembly. Fe₃O₄@GO NPs possess not only excellent ferromagnetic properties but also GO's unique properties. In this work, Fe₃O₄@GO NPs were used as fluorescent quenchers of aptasensors which show high sensitivity and selectivity. Fluorescent aptamers show high affinity to targets leading to turn on fluorescence and get easily adsorbed on the surface of Fe₃O₄@GO NPs via π - π interaction in the absence of targets, resulting in quenching of fluorescence. Magnetic separation of Fe₃O₄@GO NPs enables to increase the sensitivity of biosensors by removing non-binding aptamers and other residues from aqueous solution.