Studies of Spherical Co/y-Al₂O₃ Catalyst for Fischer-Tropsch Synthesis

<u>정재선</u>^{1,2}, 이재석¹, 최가람¹, 김현진¹, 김상우¹, 안병성¹, 문동주^{1,2,*} ¹KIST; ²UST(과학기술연합대학교) (djmoon@kist.re.kr*)

Fischer-Tropsch Synthesis (FTS) has been suggested as a key process of gas to liquids (GTL) technology for high-quality and environmentally friendly fuels.

In the present work FTS carried out over spherical shaped γ -Al₂O₃ supported cobalt catalysts. The catalysts were prepared by conventional impregnation method with various cobalt loading (5–30 wt %) and characterized by N₂ physorption, TPR, XRD, XPS and SEM/EDX techniques. The catalytic performance for FTS was investigated in a fixed-bed reactor with a H₂/CO molar ratio of 2, reaction temperature of 230 oC and reaction pressure of 20 bar. The activity and characterization results of Co/ γ -Al₂O₃ catalysts, suggested that the CO conversion depended on the micro structure of cobalt metalic phase and cobalt atomic surface density. It was also found that nano-sized cobalt particles both face centered cubic (FCC) and hexagonal close packed (HCP) forms may coexist in present catalysts , and HCP forms enhance the catalytic activity than FCC.