Calcination effects of potassium-based solid sorbents for CO₂ capture

<u>조민선</u>, 이수출, 권용목, 정석용, 김재창* 경북대학교 (kjchang@knu.ac.kr*)

To investigate calcination effects of potassium–based sorbents using $\rm ZrO_2$ or $\rm TiO_2$ as a support, the sorbents were prepared by calcining at various temperatures from 300 °C to 700 °C under $\rm N_2$ or air. The $\rm CO_2$ capture capacity of the potassium–based $\rm TiO_2$ sorbent depended on the calcination temperature and atmosphere, resulting from the formation of inactive K–Ti alloy structures, such as $\rm K_2Ti_2O_5$, $\rm K_2Ti_6O_{13}$ and $\rm K_2Ti_4O_{9}$, during calcination at temperatures over 500 °C. On the other hands, the potassium–based $\rm ZrO_2$ sorbents (KZrI30) showed excellent $\rm CO_2$ capture capacity regardless of the calcination temperature and atmosphere. This result is because the KZrI30 sorbents show separated $\rm K_2CO_3$ and $\rm ZrO_2$ phases without any new structures throughout the calcination of the sorbent at high temperatures over 500 °C under $\rm N_2$ or air.