Herarchical Core-Shell Nanostructures of SnO₂ Hollow Spheres Covered with TiO₂ Nanosheets for Dye-Sensitized Solar Cells

, ,

(jonghak@yonsei.ac.kr*)

Since O'Regan and Gratzel announced dye-sensitized solar cells (DSSCs), DSSCs gradually engage society's attention due to their ease of fabrication, low cost, green production process and high efficiency. Furthermore, substantial efforts have been made to fabricate solid-state DSSCs (ssDSSCs) with stable electrolytes. Obtaining fine pore-filling of solid electrolyte into a photoanode is pivotal for high energy conversion efficiency of ssDSSCs. A multi-layered shell is considered to be an effective way to satisfy these conditions as good photoanode. TiO₂ has been widely used as a photoanode in DSSCs over the last few decades. However, due to low electron mobility of TiO₂, alternative metal oxides such as ZnO, Nb₂O₅ and SnO₂ are considered as substitutes. Especially, SnO₂ has a decided advantage since its higher conduction band energy (3.6 eV) and electron mobility. In this study, we report 8.2 % conversion efficiency which is one of the highest values for ssDSSCs. This ssDSSC is based on inner SnO₂ hollow sphere (SHS) surrounded by outer TiO₂ nanosheets (TNS) which result in improved light scattering, large surface area and excellent electron transport.