Viscosity Measurement of CO2 -in -Water Foam with Nonionic Siloxane Surfactant

<u>Ria Ayu Pramudita</u>, ^{1,*} ; ¹ (wsryoo@hongik.ac.kr^{*})

Emulsions and foams of CO₂ and water are of high interest in various fields, including enhanced oil recovery, drug delvery systems, and microelectronics fabrication. High-pressure CO₂ may also be utilized as non-toxic alternative to harmful volatile organic solvents. A set of high-pressure apparatus for generating CO₂ -in -water foam was utilized to measure the viscosity of the CO₂ -in -water foam in a range of experimental conditions from 35 to 55 °C up to the pressure of 3,500 psi. The effects of temperature, pressure, as well as capillary shear stress were analyzed for water-soluble surfactant that contains functional groups of trisiloxane as CO₂ -phile. Aqueous 2 wt.% surfactant solutions were mixed with the equal weight of CO₂ to form 50.50 emulsions in the high-pressure apparatus. The apparent viscosity was calculated from the pressure drop measured in various lengths of capillary tubes by using Hagen -Poiseuille equation. The viscosity was measured as high as a few tens of centipoise when the surfactant was effective in forming stable foam. From observations of apparent viscosities with varying shear rate, the CO₂ -in -water emulsions exhibited shear -thinning behaviors.