Effect of CO₂ in ODH of Low Alkanes over TUD-1 type MO_x Catalysts

<u>Abhishek Burri,</u>

(separk@inha.ac.kr*)

Catalytic dehydrogenation technologies that are aimed for light olefins production are developed mainly for propane and isobutane dehydrogenation. The utilization of CO_2 as soft oxidant in ODH has its own advantages incomparable with other traditional oxidants like O_2 , H_2O like improved product selectivities, enhanced catalytic stability by less coke formations and green process along with useful byproducts (CO). The catalytic systems developed so far based on the redox, acid-base bifunctional, acid catalysts and other are way far from commercialization. Present study is on the synthesis of 3D mesoporous TUD-1 type materials based TiO₂ -ZrO₂ for the oxidative dehydrogenation of propane with conversions upto 50% and selectivity towards propylene more than 90% and 7% CO₂ conversion was observed. In case of, butane the conversions are higher up to 60% with an overall C4 olefin selectivity of 95% with 8% CO₂ conversion.