Modifications of surface compositions in an on -site -used V₂O₅ -WO₃/TiO₂ catalyst for lowering N₂O formation in the reduction of NO by NH₃

(moonkim@daegu.ac.kr*)

____,

This study has been focused on N₂O formation upon changes in surface compositions in an on-site-used V_2O_5 -WO₃/TiO₂ catalyst using acid washing and active component addition techniques. The catalyst after on -site-use in a power plant showed decrease in surface area, and a shift of pore size distribution toward larger size. Vanadium amounts in the spent catalyst increased by 1%, and the vanadium oxide existed in the form of polycrystalline nanoparticles. The indicated changes in the physicochemical properties before and after on -site-use could lead to the noticeable difference in the N₂O production in the NH₃ -SCR reaction. An acid washing of the used sample yielded N₂O production similar to that of a fresh catalyst, while the formation of N₂O approaching that over the spent catalyst was measured when 1% V₂O₅ was added to the fresh sample. XRF and ICP measurements gave the presence of MoO₃ with significant amounts in the used catalyst. Consequently, it is clear that such alien metals, mainly vanadium and molybdenum oxides, play a key role in creating a huge quantity of N₂O production.