Chemical Doping of TiO₂ with Nitrogen and Fluorine and Its Support Effect on Catalytic Activity of CO Oxidation

¹Center for Nanomaterials and Chemical Reactions, Institute for Basic Science; ²Graduate School of EEWS, KAIST; ³Centre for Materials Architecturing, KIST (Korea Institute of Science and Technology) (jeongypark@kaist.ac.kr^{*})

We investigated the effect of strong metal-support interaction (SMSI) and the role of electronic excitations at the interfaces by studying the effect of the support on catalytic activity of CO oxidation using Pt on doped & undoped TiO_2 . As a support, TiO_2 was synthesized via sol-gel process; chemically doped with N & F non-metal anions. The Pt/N-, Pt/F-, and Pt/undoped TiO_2 catalysts were fabricated by depositing Pt on spin coated TiO_2 films by arc plasma deposition technique. The CO Oxidation turnover rates of Pt/N- & Pt/F-doped TiO_2 were a factor of ~2.5 higher to Pt/undoped TiO_2 was observed. We attribute the enhancement of activity with O_2 vacancies formed during the doping process and the facile charge transfer at the metal-oxide interfaces. Alternatively, lower oxidation states of Pt/doped TiO_2 due to enhanced charge transfer can result in higher catalytic activity.