Photocatalytic activity meso -porous zirconia nanoparticles modified with BiOI under simulated solar light irradiation

<u>Kumaravel Vignesh,</u> ¹, ^{1,*}
Yeungnam University; ¹
(mskang@ynu.ac.kr*)

BiOI modified zirconia (BiOI- ZrO_2) nanoparticles were fabricated using precipitation-deposition method. The physicochemical properties of BiOI/ ZrO_2 were studied through X-ray diffraction pattern (PRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), B.E.T-surface area, X-ray photoelectron spectroscopy (XPS), UV—vis diffuse reflectance spectroscopy (UV-vis-DRS) and photoluminescence (PL) spectroscopy techniques. The absorption maximum of ZrO_2 was shifted to the visible region after sensitization with BiOI. B.E.T. surface area results inferred that the prepared hetero-junctions were meso-porous in nature. The photocatalytic activity of BiOI- ZrO_2 toward the degradation of methyl violet (MV) dye under simulated solar light irradiation was investigated in detail. It was revealed that 3 % BiOI- ZrO_2 exhibited higher photocatalytic performance (98 % of MV degradation) compared with ZrO_2 and BiOI. The enhancement in the photocatalytic activity of BiOI- ZrO_2 was contributed by the sensitization effect of BiOI, suppression of electron-hole recombination and the formation of p-n heterojunction.