CO₂ sorption of mesoporous magnesium oxides at ambient temperature

<u>钟绵君</u>, Anh Tuan Vu, 이창하*

Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Korea, Separation & Purification laboratory

(leech@yonsei.ac.kr*)

Carbon dioxide (CO₂) accumulates in the atmosphere and results in increase in the average global temperature and climatic changes. Therefore, CO₂ capture has attracted the researcher's attention to design potential sorbents recently.

In this work, Mesoporous magnesium oxide (MgO) was synthesized by aero-gel method using magnesium methoxide as precursor, toluene as solvent and distilled water as reactant. Particle morphology was polyhedral sharp and aggregated in SEM images. The type-IV adsorption isotherm with H1 hysteresis obtained by N2 adsorption/desorption study for MgO.

The performance of as-prepared mesoporous MgO toward CO_2 was analyzed in thermograimetire analysis (TGA). At room temperature (25°C), the CO_2 sorption capacity was up to 10.6wt%. The sorption capacity decreased with an increase in CO_2 temperature. Finally, the thermal stability of mesoporous MgO was tested by the cyclic test of CO_2 sorption and regeneration in this work.