Optimization of Ni-Ce_{0.6}Zr_{0.4}O₂ Catalysts for Deoxygenation of Oleic Acid

<u>김학민</u>, 정대운, 심재오, 전경원, 이열림, 노현석*, 고창현¹ 연세대학교; ¹전남대학교 (hsroh@yonsei.ac.kr*)

Ni–Ce_{0.6}Zr_{0.4}O₂ catalysts were prepared by a co–precipitation method for deoxygenation of oleic acid. The Ni loading amount was fixed at 20wt%. Calcination temperature was systematically changed to optimize 20wt% Ni–Ce_{0.6}Zr_{0.4}O₂ catalysts. 20wt% Ni–Ce_{0.6}Zr_{0.4}O₂ catalyst calcined at 300 °C exhibited the highest oleic acid conversion ($X_{0.A.}$ = 98.3%) as well as high selectivity to diesel compounds (S_{diesel} = 33.9%) at the reaction temperature of 300 °C. The catalyst properties were studied using various characterization techniques (TPR, BET, XRD and NH₃–TPD) and related to the activity results in deoxygenation.