Hydrogen production from low temperature WGS reaction over co-precipitated $Cu-Ce_{(1-x)}Zr_{(x)}$ O_2 catalysts

> <u>정대운</u>, 나현석, 장원준, 한원비, 노현석*, 정운호¹, 윤왕래¹ 연세대학교; ¹한국에너지기술연구원 (hsroh@yonsei.ac.kr*)

Water-gas shift (WGS) reaction has been carried out at the gas hourly space velocity of $72,152~h^{-1}$ over $Cu-Ce_{(1-x)}Zr_{(x)}O_2$ catalyst prepared by a co-precipitation method. The CeO_2/ZrO_2 ratio was systematically varied to optimize $Cu-Ce_{(1-x)}Zr_{(x)}O_2$ catalysts. Cu $-Ce_{0.8}Zr_{0.2}O_2$ exhibited the highest CO conversion as well as the most stable activity ($X_{CO} > 41\%$ at $320~^{\circ}C$ for 25~h). The excellent catalytic performance is mainly due to a strong metal to support interaction, resulting in the prevention of Cu sintering.