기포유동층 반응기에서 재생기체의 스팀 함량이 CO₂ 흡수용 K-계 건식흡수제의 흡수능에 미치 는 영향

<u>이요한</u>, 김연주, 김규리, 박영철¹, 조성호¹, 이창근¹, 서용원* 울산과학기술대학교; ¹한국에너지기술연구원

(ywseo@unist.ac.kr*)

이 연구에서는 발전소 배가스로부터의 CO₂를 회수하는 방법으로 재생 가능한 K-계 건식흡수 제를 이용하였으며, 재생기체가 흡수능에 미치는 영향을 살펴보기 위해 기포 유동층 반응기 에서 스팀이 첨가된 재생 기체를 사용하였다. K₂CO₃ 40%와 지지체 60%로 구성되어 있는 흡 수제를 사용하였으며, 흡수반응은 실제 배가스와 유사한 조성의 기체 (CO₂: 10 %, N₂: 77.9 %, H₂O: 12.1 %)를 사용하여 반응기 온도 60 ℃에서 1시간 동안 흡수 반응을 진행하였다. 재 생반응은 180 ℃에서 N₂, N₂ + H₂O (12.2 %, 30.8 %), CO₂, CO₂ + H₂O (12.2 %, 30.8 %)을 재생기체로 사용하여 진행하였으며, 각 재생기체에 대하여 첫 번째와 두 번째 사이클에서의 흡수능을 비교하였다. N₂를 재생기체로 사용한 경우가 CO₂를 사용한 경우보다 전체적으로 재 생이 원활히 이루어져 두 번째 사이클에서의 흡수능이 더 우수하였다. 특히, N₂ + H₂O를 재생 기체로 사용하게 되면 K₂CO₃·1.5H₂O가 생성되어 두 번째 사이클에서 초기 흡수능이 증가하 였다. 하지만 CO₂ + H₂O를 재생기체로 사용한 경우에는 평형이동으로 인하여 180 ℃에서 재 생이 거의 이루어지지 않았으며, 이를 13C NMR 분석을 통하여 확인하였다. 재생기체로 N₂를 사용할 경우 스팀이 첨가되면 다음 사이클에서 흡수능이 향상될 수 있지만 CO₂의 경우에는 흡수능이 저하될 수 있음을 알 수 있었다.