Phase Equilibria and Dissociation Enthalpies of Tri–n–butylphosphine Oxide Semiclathrate Hydrates Incorporated with CH_4 , CO_2 , and H_2

<u>이기선</u>, 차종호¹, 강정원, 김기섭^{*} 한국교통대학교; ¹한국에너지기술연구원 (kks1114@ut.ac.kr^{*})

We investigated the phase equilibrium boundary of tri-n-butylphosphine oxide (TBPO) semiclathrate hydrates incorporated with CH₄, CO₂, and H₂. TBPO aqueous solutions with

a molality (m) of (1.61 and 1.98) mol•kg⁻¹ were used for hydrate formation, which corresponded to the clathrate structures of TBPO• 34.5H₂O and 28H₂O, respectively. The phase boundary at both concentrations was shifted to the promotion region represented by lower pressures and higher temperatures, compared to each simple gas hydrate. In particular, TBPO + CO₂ double hydrate presented mild hydrate stabilization conditions less than 1 MPa at (280 to 285) K. Additionally, the dissociation enthalpy (Δ Hd) calculated from the phase boundary curves for the TBPO + CO₂ double hydrates was almost the same as that for tetra–n–butylammonium bromide (TBAB) + CO₂ double hydrate (219.5 kJ•mol⁻¹ for m = 1.61 mol•kg⁻¹ and 211.6 kJ•mol⁻¹ for m = 1.98 mol•kg⁻¹). These results demonstrate that the TBPO + CO₂ double hydrate could be used as refrigerants for cold storage and transportation.