Outstanding Antibiofilm Features of Quanta-CuO Thin Film on Glass

Nirmalya Tripathy¹, Rafiq Ahmad², Seung Hyuck Bang³, Jiho Min³, 한윤봉^{4,5,*}

¹전북대학교; ²School of Semiconductor and Chemical Engineering, Nanomaterials

Processing Research Center; ³Dept. of Bioprocess Enigineering; ⁴School of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University; ⁵567 Baekje-daero, Jeonju 561-756, Republic of Korea (ybhahn@chonbuk.ac.kr*)

CuO quantum dots (quanta-CuO) synthesized by simple solution route, was formulated as paint to construct thin film coatings on glass. Antibiofilm assay showed a very high contact bacteria-killing capacity of as-coated CuO glass surfaces towards Escherichia coli and Staphylococcus aureus. This efficient antibacterial activity was ascribed to the intracellular ROS generation by quanta-CuO attached to the bacterial cells, which in turn provokes an oxidative stress. Furthermore, the synergetic effect of quanta-CuO and conventional antibiotics enhances the antibacterial efficacy of commonly used antibiotics. This state-of-the-art design qualifies them as promising candidates for novel biomedical device coatings.