Catalytic performance of the perovskite-like NiSrOx on the modified SiC support for the combined steam reforming of CH₄ and CO₂

<u>김아롱</u>, 배종욱*, 박소영 성균관대학교 (finejw@skku.edu*)

The nickel containing perovskite-like (La)NiSrOx catalysts on the modified SiC support were investigated for the combined steam reforming reaction of CH₄ with CO₂. The (La) NiSrOx perovskite-like catalysts showed a lower sintering character of nickel particles and a lower coke formation. The SiC support was previously modified with Al₂O₃ or MgAl₂O₄ component to enhance the dispersion of (La)NiSrOx perovskite-like particles. At optimum content of Al₂O₃ or MgAl₂O₄ modifier on SiC support, the catalyst showed an enhanced CO₂ conversion by increasing the adsorption properties of CO₂ on the basic La or Sr oxides. The optimum concentration of modifier was found to be around 10wt% Al₂O₃ and MgAl₂O₄ on SiC support. The suppressed aggregation of nickel-containing particles was also attributed to the strong interaction between Ni and modifier. The different catalytic behaviors were explained by characterizing the surface properties such as Ni particle sizes and basic properties through XRD, XPS, BET and TEM analyses.