Effect of different metal on hydrogenation and ring opening of tetralin

<u>고승우</u>¹, 임지선^{1,2}, Dipali P. Upare^{1,2}, 전영표^{1,2}, 이철위^{1,2,*} ¹한국화학연구원; ²University of Science and Technology (chulwee@krict.re.kr^{*})

The hydrogenation and selective ring opening (SRO) of tetralin catalyzed by Ir/USY, Pt/USY, Pd/USY and Ni/USY catalysts have been studied, in context of the removal of polynuclear aromatics from diesel fuel. The catalysts were prepared by impregnation method and their surfaces were characterized by H_2 -TPR, XRD, NH₃-TPD, BET and

TEM. Tetraline ring opening was carried out in a fixed-bed reactor at 300° C, under 30bar H₂ atmosphere, $2.3h^{-1}$ of WHSV, H₂/feed molar ratio of 40. The resultant products were analyzed by GC and GC-MS analysis. At a given reaction temperature, a Pt/USY catalyst produces more amount of C10 products (and thus less cracking) than that of other catalysts with similar density of strong acid sites. When upgrading low-quality diesel cuts by using, both the lower degree of cracking and higher yields of ring-opening-product (ROP) were obtained for the processes of using Pt based catalysts, which can result in higher cetane barrel values.