Characterization of Spherical y-alumina Supported Cobalt Catalysts for Fischer Tropsch Synthesis

<u>이재석</u>^{1,2}, 정재선^{1,3}, 최가람^{1,4}, 문동주^{1,3,*}, 이관영² ¹한국과학기술연구원; ²고려대학교; ³과학기술연합대학원대학교; ⁴연세대학교 (djmoon@kist.re.kr*)

Fischer–Tropsch Synthesis(FTS) for the production of clean synthetic fuels has been considered as a key technology in GTL (gas-to-liquids) process. In this work, Co-based modified catalysts supported on γ -Al2O3 were prepared by an impregnation method. The prepared catalysts were characterized by N2 physisorption, XRD, TPR, SEM and TEM techniques. The catalytic performance for FTS was ecaluated in a fixed bed reactor system with the H2/CO ratio of 2:1, reaction temperature of 230°C and reaction pressure of 20bar. The results suggest that catalytic performance over cobalt based catalysts supported on spherical γ -Al2O3 depends on the cobalt dispersion and the reducibility, caused by decreasing interactions with γ -Al2O3.