Additive effects on CO₂ absorption and regeneration properties of Lithium Orthosilicate-based sorbents at high temperature

<u>김민주</u>, 이수출¹, 권용목, 차수호, 정석용¹, 박용기², 서휘민², 김재창* 경북대학교; ¹경북대학교 차세대에너지기술연구소; ²한국화학연구원 (kjchang@knu.ac.kr*)

To improve regeneration properties of the Lithium orthosilicate (Li₄SiO₄) sorbent, Li₄SiO₄-based sorbents were prepared by physical mixing Li₂CO₃ with SiO₂ and various metal oxides, such as Al₂O₃, CeO₂, MgO and CaO (LS2Al, LS2Ce, LS2Mg and LS2Ca, respectively). CO₂ capture capacities of Li₄SiO₄-based sorbents were investigated in the fixed-bed reactor during multiple cycles at high temperature (sorption at 550°C and regeneration at 700°C). Regeneration properties of the LS2Ce, LS2Mg and LS2Ca sorbents could be improved by adding metal oxides, even though their CO₂ capture capacities decreased compared with a LS2 sorbent, which was prepared by physical mixing Li₂CO₃ with SiO₂ in the molar ratio of 2:1. In particular, the LS2Al sorbent, which was prepared by adding Al₂O₃, showed high CO₂ capture capacity of 204.0 mg CO2/g sorbent and its CO₂ capture capacity was maintained during multiple cycles.