Regenerated Bacterial Cellulose Scaffolds for tissue regeneration applications

Shaukat Khan¹, Mazhar Ul-Islam^{1,2}, Muhammad Wajid Ullah¹, 김예지¹, 장재현¹, 노태용¹, 박중곤^{1,†}

¹경북대학교; ²Department of Chemical Engineering, College of Engineering, (parkjk@knu.ac.kr[†])

The current study involves the fabrication of regenerated bacterial cellulose (rBC) scaffolds for *in vitro* tissue regeneration applications. BC was dissolved and salt was added as porogens followed by casting and solvent removal in water. The structure characterization of the synthesized scaffolds was carried out through Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy (FE-SEM). FTIR indicated no alteration in chemical structure during regeneration while FE-SEM showed the porous structure of the scaffolds. *In vitro* biocompatibility tests showed good cell adhesion and proliferation on the rBC scaffolds while the cell toxicity assay confirmed their nontoxic nature. These results demonstrate our rBC scaffolds as potential candidate for tissue regeneration applications.