$\label{eq:characteristics} Characteristics of {\rm SnO}_2 \hbox{:} {\rm Ga \ powder \ prepared \ by \ the \ liquid \ drop \ fluidized \ reactor \ for \ liquid \ component \ detection$

Optical and electrical characteristics of Ga doped SnO_2 powder prepared by the liquid drop fluidized reactor were investigated to develop the sensor material for the detection of liquid component in the room-temperature. Effects of Ga content doped into the lattice of SnO_2 host material on the optical and electrical properties of SnO_2 :Ga were examined. Sn^{4+} in the host lattice was successfully substituted by Ga^{3+} , which resulted in the charge transfer at the surface of SnO_2 :Ga in order to maintain the charge balance. The substitution of Sn^{4+} by Ga^{3+} was identified by means of XRD analysis : The main peak of XRD was shifted slightly to the low angle with an increase in the Ga content doped into the lattice of SnO_2 . The charge transfer was analyzed by means of UVvisible absorption spectra and PL spectra. The doping of Ga into SnO_2 could reduce the band gap energy, which was analyzed by using the DRS analysis. The roomtemperature UV-visible absorption spectra exhibited that the as-prepared SnO_2 :Ga could respond to the methyl alcohol, ethyl alcohol, isopropyl alcohol and ammonium hydroxide within 5 seconds.