Structural and electronic properties of hydrogenated sp³ multilayer graphene

<u>황대연</u>^{1,2}, Christopher W. Bielawski^{2,1}, Rodney S. Ruoff^{2,1}, 곽상규^{1,2,†} ¹울산과학기술대학교; ²기초과학연구원 (skkwak@unist.ac.kr[†])

We studied how multilayer graphene can undergo transformation into sp³ bonded structure using the density functional theory calculation. Hydrogenation of multilayer graphene at top and bottom layer induces sp² to sp³ transition. Hydrogenated surface reduces the transition barrier of sp³ multilayer graphene due to low stability of hydrogen passivated graphene layer caused by unpaired electron. The transformation occurred depending on the number of graphene layers and hydrogen coverage. As number of layer is lower and hydrogen coverage is higher, the transformation into sp³ multilayer graphene becomes easier. Electronic and mechanical properties of sp³ multilayer graphene were also obtained by varying the number of layers and stacking structure of sp³ multilayer graphene. We found that sp³ bonded structure induced from multilayer graphene can have tunable band gap and Young's modulus, which reveals their potential usage for the electronic devices.