$\begin{array}{l} \mbox{Process Optimization of Electrochemical Deposition of MoS_2 catalyst for Electrochemical Hydrogen Evolution Reaction} \end{array}$

<u>Zhenyu Jin</u>, 이선영¹, 김성준¹, Ranjith Bose¹, 신석희¹, 고동현¹, 한승주¹, 민요셉^{1,†} 건국대학교; ¹건국대학교 화학공학과 (ysmin@konkuk.ac.kr[†])

Recently, amorphous molybdenum sulfide (MoS_x) has appeared to be an emerging material for electrochemical hydrogen evolution reaction (HER). Although there are several electrochemical deposition methods for MoS_2 , process parameters for the electrochemical deposition of MoS_2 were not optimized for hydrogen evolution reactions. Here, we prepare MoS_x catalyst on carbon fiber paper (CFP) by electrochemical deposition method using a freshly-prepared sodium tetrathiomolybdate (Na_2MoS_4) solution. The process parameters such as precursor concentrations, deposition time, and applied voltage are optimized to improve the HER performance on MoS_x catalyst. It is demonstrated that the exchange current density, Tafel slope, and overpotential to reach a cathodic current of 10 mA/cm² are significantly enhanced by adjusting the deposition time, precursor concentrations, and applied voltage.