Unseeded Hydroxide-Mediated Synthesis and CO_2 Adsorption Properties of an Aluminosilicate Zeolite with the RTH Topology

<u>조동희</u>, 임종빈, 류태경, 남인식, Miguel A. Camblor¹, 홍석봉[†] 포항공과대학교; ¹ICMM-CSIC (sbhong@postech.ac.kr[†])

We have synthesized an aluminosilicate RTH-type zeolite with Si/Al = 10 using 1,2,3trimethylimidazolium (123TMI⁺) as an organic structure-directing agent (OSDA) together with Na⁺ or K⁺ in hydroxide media and without the use of seed crystals. The obtained zeolite is characterized by a cuboid morphology made of very small, ill-defined crystallites, largely different from the plank-like morphology typically observed for RTH-type zeolite crystals thus far. More interestingly, we show experimental evidence demonstrating that two 123TMI⁺ ions are located within each [4⁶5⁸6⁴8⁴] cavity of the RTH framework, forming antiparallel dimers, as found by Rietveld refinement. When hydrothermally aged at 1023 K, Cu-RTH is much less active for NO reduction with NH₃ than Cu-SSZ-13, the best catalyst known for this reaction to date. However, while the CO_2 uptake (3.2 mmol g⁻¹) on Na-RTH at 298 K and 1.0 bar is lower than that (4.5 mmol g⁻¹) on zeolite Na-Rho, a well-studied small-pore zeolite that selectively adsorbs CO_2 , it exhibits much faster CO_2 adsorbent.